Teaching
B58A1070:自动控制原理
考核:平时考查与期末考查相结合。
- 平时成绩(30%): 考勤与作业
- 综合考查(70%): 半开卷随堂测试
参考书目:
- Katsuhiko Ogata,现代控制工程,第五版,电子工业出版社,2017.
B58A1060: Reinforcement Learning
Assessment:
- Homework: 30%
- Course Project: 70%
References:
- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, 2nd Edition, MIT Press, 2018.
DB009135: Optimization, Game Theory and Learning
Assessment:
- Class participation: 30%
- Exercise: 70%
Related Topics:
- Optimization theory and algorithms: gradient descent algorithms, primal-dual methods, accelerated methods, etc.
- Game theory and algorithms: minimax optimization, Nash equilibrium seeking, etc.
- Optimization in learning: stochastic gradient descent, variance reduced methods, etc.
- Learning to optimize: leverages machine learning to develop optimization methods.
Some References:
- S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends in Machine Learning, vol. 8, no. 3–4, pp. 231–357, 2015.
- L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.
- B. Franci, S. Grammatico, and M. Staudigl, Distributed generalized Nash equilibrium seeking: An operator-theoretic perspective, IEEE Control Systems, pp. 87–102, 2022.
- Dimitri P. Bertsekas, Nonlinear Programming, 3rd edition, 2016.
- T. Chen et al., Learning to optimize: A primer and a benchmark, Journal of Machine Learning Research, vol. 23, pp. 1–59, 2022.
|